Pages

Tuesday, August 11, 2020

STANDARD FORM




  A number is in its standard form if it's in the form (A ×10ⁿ),where A is a number between 1 and 10 and (n ) is a power of 10.


    Standard form is a way of writing very large or small numbers easily. 

 For example,the number 6000,can be written as 6 ×10³
Since 10³ =1000.

When very small numbers are written in standard form,their power or index are negative.

For example,0.1 can be written as
1×10⁻¹.


   

WORKED EXAMPLES


Write the following in Standard form.


1) 75,000,000 

    This is greater than 1. You rewrite it as :
  75,000,000.0

Now, move the decimal point 

7 places to the left to get a number between 1 and 10,which is 7.


    = 7.5×10,000,000

     = 7.5 × 10⁷



2) 0.000 0012

   
  solution:

0.000 0012

ᵗʰⁱˢ ʰᵃˢ ᵃ ᵈᵉᶜⁱᵐᵃˡ ᵖᵒⁱⁿᵗ ᵃˡʳᵉᵃᵈʸ.

ᵐᵒᵛᵉ ᵗʰᵉ ᵈᵉᶜⁱᵐᵃˡ ᵖᵒⁱⁿᵗ 6 ᵖˡᵃᶜᵉˢ ᵗᵒ ᵗʰᵉ ʳⁱᵍʰᵗ ᵗᵒ ᵍᵉᵗ ᵃ ⁿᵘᵐᵇᵉʳ ᵇᵉᵗʷᵉᵉⁿ 1 ᵃⁿᵈ 10 ʷʰⁱᶜʰ ⁱˢ 1.2


= 1.2 × 10⁻⁶

ᵗʰᵉ ⁱⁿᵈᵉˣ ⁱˢ ⁿᵉᵍᵃᵗⁱᵛᵉ ᵇᵉᶜᵃᵘˢᵉ 0.000 0012 ⁱˢ ᵃ ⁿᵘᵐᵇᵉʳ ˡᵉˢˢ ᵗʰᵃⁿ 1



3) 158.6
   
158.6 = 1.586 × 10²

(ᵐᵒᵛᵉ ᵗʰᵉ ᵈᵉᶜⁱᵐᵃˡ ᵖᵒⁱⁿᵗ 2 ᵖˡᵃᶜᵉˢ ᵗᵒ ᵗʰᵉ ˡᵉᶠᵗ ᵗᵒ ᵍᵉᵗ ᵃ ⁿᵘᵐᵇᵉʳ ᵇᵉᵗʷᵉᵉⁿ 1 ᵃⁿᵈ 10,ʷʰⁱᶜʰ ⁱˢ 1.586,ᵗʰᵉ ⁱⁿᵈᵉˣ ᵒʳ ᵖᵒʷᵉʳ ᶜᵒʳʳᵉˢᵖᵒⁿᵈˢ ᵗᵒ ᵗʰᵉ ⁿᵘᵐᵇᵉʳ ᵒᶠ ᵗⁱᵐᵉˢ ᵗʰᵉ ᵖᵒⁱⁿᵗ ʷᵃˢ ᵐᵒᵛᵉᵈ.)



4) 000.000589
    

 move the point 4 places to the right,the first two zeros are insignificant.


= 5.89 × 10⁻⁴


5)   If p = 5×10⁻² and q= 8× 10⁵,
      calculate p×q


solution:

p×q = 5×10⁻² × 8×10⁵
      = 5×8×10⁻²×10⁵
      = 40×10⁽⁻²⁺⁵⁾

(ᶠʳᵒᵐ ᵗʰᵉ ᵏⁿᵒʷˡᵉᵈᵍᵉ ᵒᶠ ˡᵃʷ ᵒᶠ ⁱⁿᵈⁱᶜᵉˢ)


 = 40×10³
 = 4×10¹ ×10³
 = 4×10⁴

(40 has to be converted to standard form because it is not a number between 1 and 10)



6) write 1.15 ×10⁻⁶ as a decimal.
      

solution:

     1.15 × 10⁻⁶

=   1.15 × 1
             -----
              10⁶

ᶠʳᵒᵐ ᵗʰᵉ ˡᵃʷ ᵒᶠ ⁱⁿᵈⁱᶜᵉˢ, (a⁻ⁿ = 1/aⁿ)


= 1.15
-------------
1 000 000

= 0.000 00115




7) calculate 7,200,000 ÷ 800,

ˡᵉᵃᵛⁱⁿᵍ ʸᵒᵘʳ ᵃⁿˢʷᵉʳ ⁱⁿ ˢᵗᵃⁿᵈᵃʳᵈ ᶠᵒʳᵐ


Solution:

write all in standard form.

= 7.2×10⁶ ÷ (8×10²)

= (7.2 ÷8)×(10⁶÷10²

= 0.9 × 10⁽⁶⁻²⁾
= 0.9 × 10⁴

(ᶜʰᵃⁿᵍᵉ 0.9 ᵗᵒ ˢᵗᵃⁿᵈᵃʳᵈ ᶠᵒʳᵐ ᵇᵉᶜᵃᵘˢᵉ ⁱᵗ ⁱˢ ⁿᵒᵗ ᵇᵉᵗʷᵉᵉⁿ 1 ᵃⁿᵈ 10)


= 9 × 10⁻¹ × 10⁴

= 9 × 10⁽⁻¹⁺⁴⁾       (ˡᵃʷ ᵒᶠ ⁱⁿᵈⁱᶜᵉˢ)

= 9 × 10³



8) Evaluate 
   
(3 × 10⁴) × (7 × 10⁵),
leaving your answer in standard form.



solution:

   3 × 10⁴ × 7 × 10⁵
= 3×7 × 10⁴ × 10⁵
= 21 × 10⁹

(21 Is not in standard form,so we convert it to S.F)


= 2.1 × 10 ×10⁹
= 2.1 × 10¹⁰



9) Evaluate

  √[(8.1 × 10⁻⁶) ÷(2.25 × 10⁷)]
  
= √[(8.1÷2.25) ×(10⁻⁶ ÷ 10⁷)]

= √[3.6 × 10⁽⁻⁶⁻⁷⁾]

= √[3.6 × 10⁻¹³]

= √(3.6 × 10 × 10⁻¹⁴)

(ʷᵉ ⁿᵉᵉᵈ ᵗᵒ ᵐᵃᵏᵉ 3.6  ᵃ ᵖᵉʳᶠᵉᶜᵗ square ᵗᵒ ʳᵉᵐᵒᵛᵉ ᵗʰᵉ square root)


= √(36 × 10⁻¹⁴)

= √36 ×√(10⁻¹⁴)

= 6 × 10⁻⁷

( 10⁻⁷ × 10⁻⁷ = 10⁻¹⁴)




10) if c = 2×10⁶ and y= 6 × 10⁵

find w² if w² = cy ÷ (c-y),
to 2 significant figures.



 solution:

w² = cy ÷ (c-y)

    = 2×10⁶×6×10⁵
    ---------------------
     ( 2×10⁶) -(6×10⁵)
        
    = 2 ×6×10⁶×10⁵
----------------------------------
      (2×10×10⁵)-(6×10⁵)

   = 12 × 10¹¹
----------------------------
   (20×10⁵)-(6×10⁵)

   = 12 ×10¹¹
 ---------------------
     10⁵ ( 20-6)

    = 12 ×10¹¹
  ---------------
      14 ×10⁵

   = 12      10¹¹
      ----- × -----
       14     10⁵

   = (12/14) × 10⁶

   w² = 0.857 × 10⁶
         = 0.86 ×10⁶ 
        to 2s.f

No comments:

Post a Comment